International Flight Operations Guide
Flying internationally is more challenging and complex than domestic operations. Since the time of the Wright Brothers, pilots flying over the “High Seas” and crossing international borders have had to cope with procedural differences, international standards that are followed or ignored, language translations and individual country differences.

In a very similar process to a seafaring ship’s captain, pilots and their aircraft, crew, passengers and cargo will be subjected to the laws and requirements of the land they are operating over or into. Regulations, procedures and services vary by region and country. To minimize the impact of these variables and provide safe, secure and uneventful service, flight departments must put considerable effort into advanced planning and developing contingencies. This requires planning, ingenuity and resourcefulness on the part of the pilots, dispatchers and support staff.

Pilots are skeptical by nature and respond well to explanations of the “Why” and “How” behind any new procedure, equipment or regulation. Familiarity with the plans, procedures, and contingencies for non-normal circumstances are an integral part to pilot operability. The goal of this guide is to provide an international pilot with these type of answers and references. The explanations provided are designed to enhance a pilot’s ability to understand and operate proficiently over an oceanic/remote environment and into a foreign country.

This guide is intended as an introduction and overview of international flight operations and the issues surrounding international air travel. Commentary provided by this guide will help pilots, dispatchers and operations personnel to better understand the details and procedures required in the whole of international operations. Ample charts, diagrams, graphics and references are used thought this guide. An interested pilot can use this study guide to open the recommended document, refer to the subjects and pages as indicated in the footnotes then read the source material for themselves.

This guide is for training and reference purposes and is designed for use by pilots of various experience levels, operating business class aircraft in international operations. We take great effort to insure the accuracy and legitimacy of the information presented here. This information has been thoroughly researched and vetted by International Flight Resources, LLC. A list of reference material used appears at the end of this guide for your use.

International Flight Resources, LLC has researched and produced the content in this training guide and claims copyright to this material. This training material may not be reproduced, distributed or used without the express written consent from International Flight Resources, LLC. For authorized use or
reproduction please contact us using the information below.

Despite our best efforts, some inaccuracies may occur due to the changing and developing nature of international flight operations. We cannot make a full and complete warranty of all the information presented here. By utilizing this training guide, one agrees to abide by the terms and conditions outlined in this notification. For any errors, omissions, or comments please contact us using the information provided below.

Sincerely;

Guy D. Gribble
General Manager
International Flight Resources, LLC
Guy@InternationalFlightResources.com

"A ship in port is safe, but that's not what ships are built for."
Grace Murray Hopper, Rear Admiral USN
U.S. Navy officer and computer scientist
Table of Contents

Chapter 1, Long Range Navigation

- **Basic Principles**
 - When a Sphere is not Really a Sphere
 - Earth Reference Systems
 - Direction Finding Definitions
 - Great Circle vs. Rumb line
 - Datums and the World Geodetic Survey-1984, WGS-84
 - Time
- **Class I vs. Class II Navigation**
 - Definitions
 - Long-Range Navigation via Inertial Navigation Systems
 - Long-Range Navigation via Global Positioning Systems/GNSS
- **International Measurement Units**
 - Federal Aviation Administration, FAA
 - International Civil Aviation Organization, ICAO Annex 5
 - Conversions
- **Aeronautical Charts**
 - Basic Construction Principles
 - Federal Aviation Administration, FAA Charts
 - International Civil Aviation Organization, ICAO Charts
 - Country Specific
 - Commercial Providers
- **Navigation Log, Preparation and Usage**
 - Route
 - Altitude and Speed
- **Plotting Chart, Requirements and Usage**

Chapter 2, Worldwide Meteorology

- **Basic Properties of the Atmosphere**
 - Atmospheric Structure
 - International Standard Atmosphere Defined and Explained
- **High Altitude Weather**
 - The Tropopause
 - The Jet Stream
 - Clear Air Turbulence
 - Mountain Wave Activity
 - Ozone Hazards and Effects
 - Solar and Galactic Radiation Hazards and Effects
- **Sub-Tropical Weather**
 - Trade Wind Belts
 - Weather Over Open Seas
 - Seasonal Differences
Regional Wind Sources
Regional Obscuration Causes
Sub-Tropical High Pressure Belts
Shear Lines

Tropical Weather
Monsoon
Trough Aloft
Tropical Wave
The Inter-Tropical Convergence Zone, ITCZ

Polar Weather
Artic Peculiarities
Aurora Borealis, Aurora Australius
Light Reflection by Snow-Covered Surfaces
Light From Celestial Bodies
Ice Fog
Blowing Snow/Whiteout
Polar Jet Stream

Significant Weather Phenomena
Fog/Haze/Smoke
Volcanic Ash
Windshear
Vortex Wake Turbulence
Airmass Turbulence
Hurricanes/Cyclones/Typhoons
Tornados/Water Spouts
Thunderstorms, Hail and Lighting

Sources of Weather Information
National Oceanographic Atmospheric Administration, NOAA
US National Weather Service, NWS
Federal Aviation Administration, FAA
International Civil Aviation Organization, ICAO
World Metrological Organization, WMO
United Kingdom Metrological Office, UK MET

Reports and Forecasts Available
Dissemination of Observations and Forecasts
Significant Weather Charts
Prognostic Weather Charts
Satellite Imagery
RADAR Summary
Terminal Weather Forecast, TAF/METAR's
VOLMET and ATIS Broadcasts
Web-Cameras, Marine Observation Bouys and PIREPS
SIGMET, AIRMET and Convective SIGMETS

Interpreting and Application of Weather Data/Information
Moisture
Temperature
Pressure
Clouds
Winds
Weather Fronts
Use of Advanced Technology in Weather Forecasting Techniques

Chapter 3, International Altimetry ... 82 - 89
Pressure Measurements Used for Altimeter Settings
 hPa vs. Inches
 Millibars vs. hPa
 Metric Conversions

Vertical Placement Procedures
 QNH Procedures
 QNE Procedures
 QFE Procedures
 Transition Heights, Altitudes and Levels

Non-Standard Atmospheric Conditions and Corrections
 Corrections for Cold Weather Operations
 Corrections for Non-Standard Pressure
 Wind Effects

Common Risks Associated with International Altimetry and Mitigation Strategies

Chapter 4, International Regulations .. 90 - 107
Introduction to International Aviation Law
 Freedom of the Seas
 Admiralty Law
 Multi-Lateral Treaties

International Civil Aviation Organization, ICAO
 Formation and Purpose
 96 Articles
 19 Annex’s, Standards and Recommended Practices, “SARPs”
 ICAO Documents
 ICAO Regional Supplements
 ICAO Manuals and Circulars

Country Specific Aeronautical Information Publications
 Publication
 General Section Information
 Enroute Section Information
 Aerodrome Section Information
 NOTAMS and Aeronautical Information Circulars

Federal Aviation Regulations
 14 CFR Part 91, Subpart H and ICAO Annex 2
 Importance of ICAO Annex 2
 Private vs. Commercial Operations
 FAA Order 8900.1
 Validation Flights and Special Area of Operations
Industry Advocacy Groups
 International Business Aircraft Conference, IBAC
 National Business Aircraft Association, NBAA
 International Operators Committee, IOC
 International Airline Transport Association
 International Council of Aircraft Owners and Pilots Association

FAA Form 7233-4/ICAO Flight Plan Form, 2012
 Requirements for Use
 General Instructions
 Line Item Completion Details

Journey Logbook, Requirements and Usage
 Required Details
 General Declarations Equivalent
 Information Retention

International Notices to Airmen, NOTAMS
Occurrence, Intervention and Deviation Reporting
 Gross Navigation, Altitude Keeping and Timing Errors
 Reporting Forms
 Aviation Safety Reporting System, International

Chapter 5, Customs, Immigration and Quarantine .. 108 - 115

Aircraft Documentation

Operational Documentation
 Office of Foreign Asset Control, OFAC
 Overflight and Landing Permits

Personal Documentation
 Pilot Certificates
 Passports vs. Identification Cards
 Visas
 Crew Identification Cards

Vaccinations
 Routine vs. Recommended
 Required

Customs Declarations
 CIQ
 eAPIS
 Advise Customs

Cabotoage

Hazardous Materials Transportation by Air
 Basic Regulations
 Dangerous Goods Exemptions
 Passenger and Crew Exemptions

Security Considerations
 CIA World Factbook
 US State Department
 Watch the News
 International Aviation Safety Assessment, IASA

Copyright © 2014, International Flight Resources, LLC
Chapter 6, **Communication Operational Requirements** 116 - 123

14 CFR 91.511 Requirements
14 CFR 135.165 Requirements
ICAO Annex 2 and Annex 6 Requirements
Very-High Frequency Radios, VHF
- Requirements for carry
- 8.33 kHz Spacing Requirements
- Air-to-Air Guard Monitoring Requirements

High Frequency Radios, HF
- Requirements for Carry
- Basic Operating Principles
- Procedures for Use
- SAR Frequency Usage

Selective Calling, SELCAL
- Requirements for Carry
- Procedures for Use and “Continuous Listening Watch” Requirement

Satellite Communication, SATCOM
- Requirements for Carry
- Operational Approval and Minimum Equipment List Relief

Controller to Pilot Data Link Communication, CPDLC
- Overview of Operation
- Operational Approval and “Best Equipped, Best Served” Philosophy

Aircraft Addressing and Reporting System, ACARS
TIBA In-Flight Broadcast Procedure
- Description
- General Procedures

International Phraseology
- English the Official Language
- Examples of ICAO Phraseology

Chapter 7, **Navigation Operational Requirements** 124 - 131

14 CFR 91.511 Requirements
14 CFR 135.165 Requirements
ICAO Annex 2 and Annex 6 Requirements
Minimum Navigation Performance Standard, MNPS

Performance Based Navigation, RNP vs. RNAV
- RNP is not RNAV
- Alerting and Monitoring
- Operational Approval Required

Oceanic Navigation and RNP/RNAV
- RNP-4 and 30/30 Separation Standard

Continental Navigation and RNP/RNAV
- B-RNAV
- RNAV-2
- General Procedures

Terminal Navigation and RNP/RNAV
- RNAV SIDs and STARs
- Operational Approval Required
RNP Approach
Baro-VNAV and Continuous Descent Final Approach

RNP-AR Approach
Requirement for Approval
Operational and Airworthiness Approval Required

AirInc 424 Waypoint Naming Method

Chapter 8, **Surveillance Operational Requirements** 132 - 137

Secondary Surveillance Radar
Elementary Mode S
Enhanced Mode S
Limitations

Multilateration

Voice Reports
Position Reporting
Standard Position Reporting Format
Requirements for International Operations
Required Reporting of Turbulence, Icing and Metrological Conditions

Satellite Voice Communication, SATCOM Voice
General Procedures
Airworthiness Approval

Controller to Pilot Datalink Communication, CPDLC
General Procedures

Automatic Dependent Surveillance-Broadcast
Overview of Operation
Limitations for usage
Requirements for International Operations

Automatic Dependent Surveillance –Contract
Overview of Operation
Requirements for International Operations

FMS Waypoint Position Reporting
Overview of Operation

Chapter 9, **Additional Equipment Considerations** 138 - 145

Ground Proximity Warnings/Terrain Warning and Alerting Systems
14 CFR Part 91 Requirements
14 CFR Part 135 Requirements
ICAO Commercial Operational Requirements
ICAO General Aviation Requirements
EASA Operational Requirements

Emergency Locator Transmitter
FAA Requirements
ICAO Requirements
406 MHz vs. 121.4/243.0 MHz

Cockpit Voice Recorders
14 CFR Part 91 Requirements
14 CFR Part 135 Requirements
ICAO Commercial Operational Requirements
Chapter 10, **TERPS vs. PANS-OPS Procedure Differences** 146 - 173

They Are The Same, Only Different

- Purpose and Design of Instrument Procedures
- PANS-Ops Description
- TERPS Description
- Differences Publishing
- Importance of State’s Aeronautical Information Publication

Measurement Units
- Rounding of Numerical Values
- Fix Tolerances and Accuracy
- Temperature Scales Used
- Terrain and Obstacle Data
- WGS-84 Implementation

Departures
- Departures, Vertically Speaking
- Departures, Horizontally Speaking
- Minimum Safe and Minimum Sector Altitudes Defined
- Departures, What if the Straight-Out Standard Won't Work?
- Departures, When the Unexpected is Happening

Enroute Criteria
- Primary, Secondary and Buffer Areas
- Supplemental Splays
- RNAV, RNP Criteria
- Turn Construction
- Minimum Obstacle Clearances

Holding
- Fixes Defined and Required Bank Angles
- Timing Criteria
- Entry Procedures
- Protected Airspace and MOC
- Airspeed Differences
- “Shuttle” Procedure

Arrivals and Maneuvering Procedures
- Approach Segments
- PANS-Ops Entry Sector Defined
- TERPS Alignment Maneuvering
- Airspeed and Descent Parameters
- Course Reversals
- “On Course” Defined
Base Turn and Teardrop Turn
“Omnidirectional” Defined
Racetrack and Hold-in-Lie-of Procedure Turn
Aircraft Automation and Procedure Tracking

Approaches
Aircraft Instrument Approach Categories
Runway Alignment and MOC/ROC
Final Approach Course Width
Visual Approaches
Visual Maneuvering
Circling-to-Land Approaches
Circling/Visual Maneuvering Required Visual References
Circling, When to Descend
Circling and Missed Approach

Missed Approaches
Missed Approach Speeds
Missed Approach & Minimum Obstacle Clearance/Required Obstacle Clearance
Missed Approach Route Width
Continuous Descent Final Approach and Missed Approaches

Chapter 11, Emergency, Abnormal and Contingency Procedures 174 - 207

Contingency Planning
General Principles
“Nearest Suitable Airport” Defined
Equal Time Point Calculation and Usage
Point of Safe Return Calculation and Usage
Wet Footprint Calculation and Usage

General Oceanic
Weather Deviation
When Controller-Pilot Communications are Established
When Controller-Pilot Communications are NOT Established

ICAO Lost Communication
General Principles
Establishing Lost Communication
Procedural Actions

Interception
Purpose for Interceptions
Approach Phase
Identification Phase
Post-Interception Phase

RVSM Contingencies
Basic Concepts for Contingencies
General Principles for Accommodation of Non-RVSM Aircraft
Turbulence and Mountain Wave Activity, MWA

ACAS/TCAS II Alerts and Warnings
Wake/Vortex Turbulence
Long Range Navigation System Failures
Detection of System Problems
Recommended Actions Following a Divergence Between Systems
Recommended Actions Following a System Failure
GNSS Degraded Navigation Capability in Class II Navigation

Dead Reckoning Navigation
Plotting a Point
Determining a Course
Measuring Distance
Practical Application

Search and Rescue Procedures and Required Equipment
ICAO Article 25, Aircraft in Distress
International Maritime Organization, IMO
Search and Rescue Resources
The SAR Process
Obtaining Emergency Assistance
Automated Mutual Assistance Vessel Rescue System, AMVER
Observance of Downed Aircraft
Emergency Locator Transmitters

Ditching
Water Evacuation
Life Rafts and Floatation Devices
Survival Gear and Kits
Ground to Air Signals

Chapter 12, Worldwide RVSM Procedures and Implementation 208 - 237

Requirements for Approval
General Principles
Equipment Approval
Maintenance Approval
Operating Approval

RVSM Envelope and Tolerances
Flight Envelope
Operating Tolerances
Performance/Height Monitoring Required
Non-Compliant Aircraft Operation

Administration of Approvals
Worldwide Approval
Removal of Authority to Operate RVSM
Flight Planning Requirements
Regional Monitoring Agency, RMA

Standard Operating Procedures
Flight Planning
Pre-Flight Procedures
Standard Phraseology with ATC
Enroute Procedures
Post-Flight Procedures
Contingencies
Special Emphasis Items

US Domestic Implementation
AC 91-85
14 CFR 91.180 and 91.215
Appendix G to Part 91
Aircraft Geometric Height Measuring Elements, AGHME
Operating Approval
RVSM Approvals Database
Removal of Authority to Operate RVSM
Change of Address
Responsible Person
Operations Specification vs. Part 91 LOA

ICAO Implementation Differences
European Union Implementation Differences
Height Monitoring Unit, HMU
EUR Region HMU Locations
EU Ops 1.241
EU Ops 1.872
Temporary Guidance Leaflet #6, Revision 1
ACAS/TCAS II Carriage Requirements
Rate of Climb/Descent Requirements
Training Requirements
Non-RVSM Approved Civil Operations

China Implementation Differences
Transition Zone
Requirements for Qualification
Operation of Non-Approved Aircraft
Strategic Lateral Offset Procedure, SLOP
Aircraft Requiring Rapid Descent

Russian Implementation Differences
Vertical Separation Based on Feet
Flight Below Transition Level
Transition Zone

ACAS/TCAS II Operations
Basic Design Principals
FAA Regulatory Requirement, Part 91
FAA Regulatory Requirement, Part 135
ICAO Regulatory Requirement, Commercial Operations
ICAO Regulatory Requirement, General Aviation Operations
EASA Regulatory Requirement
Operating Principals
Required Equipment
Displays and Symbology
Collision Avoidance Logic and Alerting Thresholds
Pilot Operational Responses
Possible Advisories
RVSM Non-Requirement
NTSB Report Requirement
Chapter 13, **Oceanic and Remote Standard Operational Procedures** 238 - 249

General Principles
- Importance of a Master Document
- “Circle and Tick” Master Document Annotations
- Importance of Plotting Charts
- Importance of a Journey Logbook
- Strategic Lateral Offset Procedure, SLOP

Before Flight
- Initial Loading of Navigation Data
- Loading of Waypoints
- Route and Leg Verification
- Leaving the Ramp Area

Enroute to the Oceanic Entry Point
- Obtaining an Oceanic Clearance
- Re-Route/Re-Clearance
- Routes vs. Tracks vs. Random
- ATC Loop Errors

Overhead Oceanic/Remote Entry Point
- Position Reporting
- Navigation Accuracy
- Avionics Management
- Importance of the Navigation/Communication Log
- Circle and Tick Procedures and Annotations

Approaching/Crossing Oceanic Waypoints
- 2°/10 Minute Plotting
- Equal Time Point and Divert Alternative Updates
- Mid-Pont Checks
- Routine Monitoring

Approaching Oceanic Exit Point
- Navigation Accuracy Confirmation
- Domestic Routing and Clearance
- Destination/Alternate Updates
- Arrival and Approach Briefings

Chapter 14, **International Trip Planning** .. 250 - 263

General Principles

CNS/ATM Considerations
- Datalink Mandates

Weather Considerations
- Seasonal
- Expected
- Severe

Equipment Considerations
- Ground Handling
- Survival Equipment
- Medical Supplies
- Ships Store’s
Crew Considerations
 Documentation
 Training
 Flight Time/Duty Time Considerations
Passenger Considerations
 Documentation
 Immunizations and Vaccinations
 Physical Health Concerns Abroad
 Physical Health Concerns and Duration of Flight
 Physical Health Concerns After the Flight
Aircraft Considerations
 Maintenance Issues
 Documentation
 MEL Restrictions/Limitations with Inoperative Equipment
 Fly Away Tool/Parts Kit
Informational Resources
 Commercial Providers
 Governmental Sources
Permitting Requirements
Insurance Requirements
 USA Flight Restrictions
Itinerary Planning
 Ground Handling Provided vs. Self Arranged
 Fuel Servicing and availability

Chapter 15, **Regional Overviews** .. 264 - 303

Western Atlantic Area, WATRS Plus
 RNP (RNAV)-10 Navigation Specification
 RNAV Routes, “T” and “Y”
Gulf of Mexico/Caribbean Sea
 Oceanic “Lite”
 Voice Communication Issues
 Operational Weather Issues
Pacific Operations
 RNP (RNAV)-10 Navigation Specification
 Routing Systems
 Communication Issues
European Operations
 European Aviation Safety Agency, EASA
 Eurocontrol and “Slots”
 Procedural Differences
 SAFA Ramp Inspections
North Atlantic and MNPS Operations
 MNPS Requirements
 Transition From MNPS to PBN
 Organized Track System, OTS

Copyright © 2014, International Flight Resources, LLC
15
Datalink Mandates
NAT Oceanic Clearance
Strategic Lateral Offset Procedure

Africa
Security Issues
Permitting Requirements
Atlantic Ocean Random Routing
Inflight Position Broadcasting
Ground Handling and Airport Operations
Health Concerns

Middle East
ATM Procedures
Cultural Issues

Caribbean, Latin and South America
ATM Procedures
Operational Weather Issues
Permitting Requirements
Border Overflight Exemption
The Visa Waiver Program

Polar
Operations
Navigation
Communications
Air Traffic Management and Routing
Fuel Temperature Operational Limit
Polar Irregular Operations/Diversion
Search and Rescue, SAR
Polar Survival Equipment

Chapter 16, Country Specific Reviews 304 - 325

Brazil
Permitting Requirements
Operational Weather Issues
Air Traffic Management Issues

Russia
Permitting Requirements
Popular Airports and Ground Handling
Air Traffic Management
Navigation Database
QFE Altimeter Procedures, Measured in Meters
Terrain and Weather Issues
2014 Olympic Winter Games

India
Visa and Permitting Requirements
CIQ and Ground Handling
Security and Cultural Awareness
Air Traffic Management
Terrain and Weather Issues
China
Visa and Permitting Requirements
Air Traffic Management
Terrain and Weather Issues
CIQ and Ground Handling
Hong Kong and Macau

Chapter 17, Operational Resources ... 326 – 349
Sample Navigation/Communication Log
Visibility/Temperature and ROC Wind Speed Conversions
Altimeter Settings Conversions
Cold Weather Altimeter Correction Chart
Sample ICAO Flight Plan Form
Weather Deviation Guide
General Oceanic/Remote Procedures Guide
Sample International Trip Planning Guide
PANS-Ops vs. TERPS Cockpit Guide
Low Level/Surface Analysis Weather Chart Symbols Guide
Mid/High Level Weather Analysis Chart Symbols Guide
Safety Assessment of Foreign Aircraft, SAFA Checklist

Glossary of International Flight Operations Terms .. 350 - 358
Key Word Index ... 359 - 362
References, Illustration Credits and Footnotes .. 363 - 370
Basic Principals

When a Sphere is Not Really a Sphere

For most navigational purposes, the earth is assumed to be a perfect sphere, although in reality it is not. Measured at the equator, the earth is approximately 6,378,137 meters in diameter, while the polar diameter is approximately 6,356,752.3142 meters. The difference in these diameters is 21,384.6858 meters. This deviation from exactly round is caused by a combination of the earth’s rotation and its structural flexibility. This difference is usually expressed as a mathematical formula and can be used to express the ellipticity of the Earth for very accurate calculations.

Earth Reference System

The geometric nature of a sphere is such that any point on it is exactly like any other point. There is neither beginning nor ending. In order that defined points may be described (on the sphere we call Earth), lines of reference and a system of coordinates to locate positions on the earth is necessary.

The Earth rotates on its north-south axis. The points at which this axis of rotation meets the perimeter of the sphere are known as the North Pole and the South Pole. Lines radiating out from these poles divide the sphere into 360 degrees and are known as Meridians of Longitude. The meridian that runs through Greenwich, England is sometimes referred to the Prime Meridian. The numerical designation is actually the zero meridian. Longitude is counted east and west from this meridian through 180°. The Greenwich meridian is the 0° longitude on one side of the earth and, after crossing the poles, it becomes the 180th Meridian... 180° becomes the 180th Meridian... 180° east or west of the 0° “Prime” meridian.

Midway between the North and South poles, perpendicular to the rotational axis, the Equator is defined. Latitude is expressed as degrees either north or south of the Equator. Lines that form circles around the globe, parallel to the Equator are know as Parallels of Latitude. The numerical designation for the Equator is “Zero” degrees. Moving north or south from the Equator increases the numerical designation until at the poles. The north Pole is labeled “90 Degrees North Latitude” and the South Pole is labeled “90 South Latitude”